Satellite News

Satellites are used for a large number of purposes. Common types include military (spy) and civilian Earth observation satellites, communication satellites, navigation satellites, weather satellites, and research satellites.

  • RSS
  • Delicious
  • Facebook
  • Twitter

Popular Posts

Jeff Adams scam
Jeff Adams scam
Jeff Adams scam

Blog Archive

Mensusa

Thumbnail Recent Post

NASA Probe Sees Solar Wind Decline

The 33-year odyssey of NASA's Voyager 1 spacecraft has reached a distant point at the edge of our solar system where there is no outward motion of solar wind. Now hurtling toward interstellar space some 17.4 billion...

Super-Earth Atmosphere

A team of astronomers, including two NASA Sagan Fellows, has made the first characterizations of a super-Earth's atmosphere, by using a ground-based telescope...

Kepler Discovers

NASA's Kepler spacecraft has discovered the first confirmed planetary system with more than one planet crossing in front of, or transiting, the same star...

Pulverized Planet

Tight double-star systems might not be the best places for life to spring up, according to a new study using data from NASA's Spitzer Space Telescope....

Dark Asteroids

NASA is set to launch a sensitive new infrared telescope to seek out sneaky things in the night sky -- among them, dark asteroids that could pose a threat to Earth....

Archive for December 2010

Ten years ago, on Dec. 30, 2000, NASA's Cassini spacecraft made its closest approach to Jupiter on its way to orbiting Saturn. The main purpose was to use the gravity of the largest planet in our solar system to slingshot Cassini towards Saturn, its ultimate destination. But the encounter with Jupiter, Saturn's gas-giant big brother, also gave the Cassini project a perfect lab for testing its instruments and evaluating its operations plans for its tour of the ringed planet, which began in 2004.

"The Jupiter flyby allowed the Cassini spacecraft to stretch its wings, rehearsing for its prime time show, orbiting Saturn," said Linda Spilker, Cassini project scientist based at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "Ten years later, findings from the Jupiter flyby still continue to shape our understanding of similar processes in the Saturn system."

Cassini spent about six months - from October 2000 to March 2001 - exploring the Jupiter system. The closest approach brought Cassini to within about 9.7 million kilometers (6 million miles) of Jupiter's cloud tops at 2:05 a.m. Pacific Time, or 10:05 a.m. UTC, on Dec. 30, 2000.

Cassini captured some 26,000 images of Jupiter and its moons over six months of continual viewing, creating the most detailed global portrait of Jupiter yet.

While Cassini's images of Jupiter did not have higher resolution than the best from NASA's Voyager mission during its two 1979 flybys, Cassini's cameras had a wider color spectrum than those aboard Voyager, capturing wavelengths of radiation that could probe different heights in Jupiter's atmosphere. The images enabled scientists to watch convective lightning storms evolve over time and helped them understand the heights and composition of these storms and the many clouds, hazes and other types of storms that blanket Jupiter.

Technicians in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida are making such good progress with X-ray type image scans of space shuttle Discovery's external fuel tank that they expect to finish the job today, a day ahead of schedule.

The team has been using a refined method of gathering the computed radiography scans of all 108 support beams, called stringers, on the outside of the external tank’s intertank section. The method has provided overlapping images, which has lowered the need to have scans retaken.

Engineers at other NASA locations are analyzing the new image scans, which began Sunday. The new data, along with previous testing and analysis, will help engineers and managers determine what caused small cracks on the tops of two stringers during Discovery’s launch countdown on Nov. 5.

Space Shuttle Program managers still are scheduled to decide Thursday afternoon whether testing and analysis indicate modifications are needed on some of the stringers. If required, modifications would begin next Monday

One of the greatest challenges that NASA faces in incorporating advanced technologies into future missions is bridging the mid-Technology Readiness Level (TRL 3-6) gap between early conceptual studies and infusion of a new technology onto the critical path of a science or exploration mission. Maturing a space technology to flight readiness status through relevant environment testing is a significant challenge from both a cost and risk perspective. Flight demonstration of a technology is often considered too risky or too costly for a mission. The Crosscutting Capability Demonstrations Division matures a small number of technologies that are of benefit to multiple customers to flight readiness status, TRL 6 or higher.

The Crosscutting Capability Demonstrations Division consists of three programs that will demonstrate technologies in a relevant environment:
  • Technology Demonstration Missions Program
  • Edison Small Satellite Demonstration Missions Program
  • Flight Opportunities Program.

Snows are finally winding down in New England today, Dec. 27, as a powerful low pressure system brought blizzard conditions from northern New Jersey to Maine over Christmas weekend. The GOES-13 satellite captured an image of the low's center off the Massachusetts coast and saw the snowfall left behind.

The Geostationary Operational Environmental Satellite called GOES-13 captured the visible image. GOES satellites are operated by the National Oceanic and Atmospheric Administration, and NASA's GOES Project, located at NASA's Goddard Space Flight Center, Greenbelt, Md. creates some of the GOES satellite images and animations.

As of 1:30 p.m. EST, all blizzard warnings were canceled as the low has pulled much of its snow and rain away from land areas and into the North Atlantic Ocean. The winds behind the system are now causing more problems for residents along the U.S. East coast.

Snowfall ranged from 1.5 inches in Atlanta, Georgia to more than a foot in various areas of New Jersey, New York and the New England states. Near Wallops Island, Va. where NASA has a facility, more than 11 inches of snow was reported this morning. Newark, N.J. reported 17.7 inches of snow by midnight last night. Central Park in New York City reported 12.0 inches of snow had fallen just before midnight. Providence, Rhode Island reported 7.9 inches by midnight, while Boston, Mass. reported 9.9 inches at that time. More snow fell on top of those totals during the morning hours today.

Some of those snows are visible in today's GOES-13 satellite image. Snowfall on the ground can be seen in the image over South and North Carolina, Virginia, Maryland, Delaware, eastern Pennsylvania, New Jersey, and southeastern New York. The clouds of the low obscure New England in the image.

From Maine south to the Carolinas winds are howling in excess of 30 mph, and power outages could occur as a result of the winds and the areas with the heaviest snows. The winds in Portland, Maine today are blowing from the northwest from 20 to 30 mph with gusts over 40 mph. Yesterday in Newark, N.J. sustained winds of 41 mph were reported with gusts as high as 51 mph. Going further south, the Raleigh, N.C. National Weather Service noted that sustained northwest winds of 10 to 20 mph with gusts up to 30 mph are expected today. Even further south, Atlanta, Georgia is also experiencing winds up to 20 mph today.

The winds are making clean-up efforts difficult along the east coast, but as temperatures are expected to slowly and steadily climb over the course of the week travel will become easier every day.

A rock-zapping laser instrument on NASA's next Mars rover has roots in a demonstration that Roger Wiens saw 13 years ago in a colleague's room at Los Alamos National Laboratory in New Mexico.

The Chemistry and Camera (ChemCam) instrument on the rover Curiosity can hit rocks with a laser powerful enough to excite a pinhead-size spot into a glowing, ionized gas. ChemCam then observes the flash through a telescope and analyzes the spectrum of light to identify the chemical elements in the target.

That information about rocks or patches of soil up to about 7 meters (23 feet) away will help the rover team survey the rover's surroundings and choose which targets to drill into, or scoop up, for additional analysis by other instruments on Curiosity. With the 10 science instruments on the rover, the team will assess whether any environments in the landing area have been favorable for microbial life and for preserving evidence about whether life existed. In late 2011, NASA will launch Curiosity and the other parts of the flight system, delivering the rover to the surface of Mars in August 2012.

Wiens, a geochemist with the U.S. Department of Energy's Los Alamos National Laboratory, serves as ChemCam's principal investigator. An American and French team that he leads proposed the instrument during NASA's 2004 open competition for participation in the Mars Science Laboratory project, whose rover has since been named Curiosity.

In 1997, while working on an idea for using lasers to investigate the moon, Wiens visited a chemistry laboratory building where a colleague, Dave Cremers, had been experimenting with a different laser technique. Cremers set up a cigar-size laser powered by a little 9-volt radio battery and pointed at a rock across the room.


On Dec. 16, 2010, NASA's Mars Exploration Rover Opportunity reached a crater about the size of a football field—some 90 meters (295 feet) in diameter. The rover team plans to use cameras and spectrometers during the next several weeks to examine rocks exposed at the crater, informally named "Santa Maria."
A mosaic of image frames taken by Opportunity's navigation camera on Dec. 16 shows the crater's sharp rim and rocks ejected from the impact that had excavated the crater.

Opportunity completed its three-month prime mission on Mars in April 2004 and has been working in bonus extended missions since then. After the investigations at Santa Maria, the rover team plans to resume a long-term trek by Opportunity to the rim of Endeavour Crater, which is about 22 kilometers (14 miles) in diameter.

NASA has taken the next step toward a new generation of Deep Space Network antennas. A $40.7 million contract with General Dynamics SATCOM Technologies, San Jose, Calif., covers implementation of two additional 34-meter (112-foot) antennas at Canberra, Australia. This is part of Phase I of a plan to eventually retire the network's aging 70-meter-wide (230-foot-wide) antennas.


The Deep Space Network (DSN) consists of three communications complexes: in Goldstone, California Madrid, Spain; and Canberra, Australia. The 70-meter antennas are more than 40 years old and are showing signs of surface deterioration from constant use. Additional 34-meter antennas are being installed in Canberra in the first phase; subsequent phases will install additional 34-meter antennas in Goldstone and Madrid.
The 34-meter beam waveguide antennas are essential to keep communications flowing smoothly as NASA's fleet of spacecraft continues to expand. In addition, the waveguide design of the antennas provides easier access for maintenance and future upgrades, because sensitive electronics are housed in a below-the-ground pedestal equipment room, instead of in the center of the dish.Read More

NASA and Pratt & Whitney Rocketdyne have successfully completed the heart of the J-2X upper stage rocket engine - the turbomachinery assemblies - for the first development engine off the production line.
The engine's turbomachinery consists of two turbopumps, each part pump and part turbine. Turbines provide the power to drive the pumps. One pump pushes high-pressure liquid oxygen, or oxidizer, and the other pumps liquid hydrogen fuel through the engine and to the engine's main injector. When the two meet, the fuels combine in a controlled high-pressure explosion producing the combustion needed to propel a launch vehicle to its journey to space.

"The turbopumps are extremely complicated engine components whose design requires delicate balances between many of the fields of mechanical engineering, and whose fabrication and assembly involve extremely precise construction," said Gary Genge, J-2X turbomachinery manager at NASA's Marshall Space Flight Center in Huntsville, Ala. "We're thrilled these parts are completed, and are ready to send to Stennis Space Center for assembly onto our first engine."
The J-2X engine is a highly efficient and versatile rocket engine and has the ideal thrust and performance characteristics to power the upper stage of a heavy-lift launch vehicle. Investments made in developing the J-2X engine provide the nation with a new, robust rocket engine for future human spaceflight missions to low-Earth orbit, Mars or an asteroid. Read More

Christmas Eve, 1968. As one of the most turbulent, tragic years in American history drew to a close, millions around the world were watching and listening as the Apollo 8 astronauts -- Frank Borman, Jim Lovell and Bill Anders -- became the first humans to orbit another world.

As their command module floated above the lunar surface, the astronauts beamed back images of the moon and Earth and took turns reading from the book of Genesis, closing with a wish for everyone "on the good Earth."

"We were told that on Christmas Eve we would have the largest audience that had ever listened to a human voice," recalled Borman during 40th anniversary celebrations in 2008. "And the only instructions that we got from NASA was to do something appropriate."

Apollo 8, the first manned mission to the moon, entered lunar orbit on Christmas Eve, Dec. 24

"The first ten verses of Genesis is the foundation of many of the world's religions, not just the Christian religion," added Lovell. "There are more people in other religions than the Christian religion around the world, and so this would be appropriate to that and so that's how it came to pass."

The mission was also famous for the iconic "Earthrise" image, snapped by Anders, which would give humankind a new perspective on their home planet. Anders has said that despite all the training and preparation for an exploration of the moon, the astronauts ended up discovering Earth.

The Apollo 8 astronauts got where they were that Christmas Eve because of a bold, improvisational call by NASA. With the clock ticking on President Kennedy's challenge to land on the moon by decade's end, delays with the lunar module were threatening to slow the Apollo program. So NASA decided to change mission plans and send the Apollo 8 crew all the way to the moon without a lunar module on the first manned flight of the massive Saturn V rocket.

The crew rocketed into orbit on December 21, and after circling the moon 10 times on Christmas Eve, it was time to come home. On Christmas morning, mission control waited anxiously for word that Apollo 8's engine burn to leave lunar orbit had worked. They soon got confirmation when Lovell radioed, "Roger, please be informed there is a Santa Claus."

The crew splashed down in the Pacific on December 27. A lunar landing was still months away, but for the first time ever, men from Earth had visited the moon and returned home safely.

Thanks for this article: http://www.nasa.gov/topics/history/features/apollo_8.html

Lots of questions are coming in about the best times to view this around the world. Here's a summary from our astronomers below:

"Early in the morning on Dec. 21, a total lunar eclipse will be visible to sky watchers around the world. The eclipse is visible across all of North America - for viewers in western states, the eclipse actually begins late in the evening of Dec. 20. Viewers in Greenland, Iceland and western Europe will be able to see the beginning stages of the eclipse before moonset. In western Asia, the later stages of the eclipse will be visible after moonrise. 

All of the eclipse will be visible throughout Mexico and Central America and northwest South America. Viewers in Peru, Chile and Bolivia will see most of the eclipse, but the moon will set before the end of the Penumbral phase. Viewers in Brazil will see the moon set during totality. Parts of Africa in the northwest will also see the moon set while it is eclipsed. All but the westernmost tip of Australia will see an eclipsed moon as it rises. Unfortunately most of Africa, the middle East and India will not have a view of this event. This map will help you determine the viewing in your area." Read More

Two satellite instruments aboard NASA's Solar Radiation & Climate Experiment (SORCE) mission - the Total Solar Irradiance Monitor (TIM) and the Solar Irradiance Monitor (SIM) - have made daily measurements of the sun's brightness since 2003.

The two instruments are part of an ongoing effort to monitor variations in solar output that could affect Earth's climate. Both instruments measure aspects of the sun's irradiance, the intensity of the radiation striking the top of the atmosphere.
Instruments similar to TIM have made daily irradiance measurements of the entire solar spectrum for more than three decades, but the SIM instrument is the first to monitor the daily activity of certain parts of the spectrum, a measurement scientists call solar spectral irradiance.

In recent years, SIM has collected data that suggest the sun's brightness may vary in entirely unexpected ways. If the SIM's spectral irradiance measurements are validated and proven accurate over time, then certain parts of Earth’s atmosphere may receive surprisingly large doses of solar radiation even during lulls in solar activity.

"We have never had a reason until now to believe that parts of the spectrum may vary out of phase with the solar cycle, but now we have started to model that possibility because of the SIM results,” said Robert Cahalan, the project scientist for SORCE and the head of the climate and radiation branch at NASA's Goddard Space Flight Center in Greenbelt, Md.
Cahalan, as well as groups of scientists from the University of Colorado at Boulder and Johns Hopkins University, presented research at the American Geophysical Union meeting in San Francisco in December that explored the climate implications of the recent SIM measurements.


Cahalan’s modeling, for example, suggests that the sun may underlie variations in stratospheric temperature more strongly than currently thought. Measurements have shown that stratospheric temperatures vary by about 1 °C (1.8 °F) over the course of a solar cycle, and Cahalan has demonstrated that inputting SIM’s measurements of spectral irradiance into a climate model produces variations of that same magnitude.

Without inclusion of SIM data, the model produces stratospheric temperature variations only about a fifth as strong as would be needed to explain observed stratospheric temperature variations. "We may have a lot more to learn about how solar variability works, and how the sun might influence our climate," Cahalan said. Read More...

At NASA's Kennedy Space Center in Florida, technicians are finalizing preparations at Launch Pad 39A for a tanking test on space shuttle Discovery's external fuel tank on Friday, Dec. 17.

The rotating service structure will be moved away from the spacecraft tonight at 9:30 p.m. EST. Managers will meet at 6:30 a.m. Friday for a weather briefing before beginning the test at 7 a.m.

The test will help verify repairs associated with cracks on the tops of two 21-foot-long, U-shaped aluminum brackets, called stringers, on the external tank.

Data collected from the strain gauge and thermal couple sensors will potentially help engineers determine what caused the cracks during Discovery's launch countdown on Nov. 5. Technicians repaired the cracks and reapplied foam insulation on the stringers last month.

Results of the instrumented test will not be known immediately. Managers and engineers will review the data gathered from the test before determining the next course of action. Discovery’s next launch opportunity is no earlier than 1:34 a.m. on Feb. 3.

Life is best at Contempo technologies PVT LTD. I joined Contempo SEG before a year. I have been in more than 4 companies and this is the first time I am experiencing homely atmosphere. People are very friendly and Contempo technologies organizes many social events that helps to know each other.
All other companies I worked rarely care about employee socialism. In Contempo tech that is not the case people are allowed to be friendly with each other in a pleasant office environment. Events like Christmas party, quiz, Halloween party makes people enjoy the company. Contempo technologies pvt ltd has a team that helps people get to know each other. At Contempo I never felt I am at an IT company. Usually IT work is very stressful but in this company it has not been the case. Don’t think I am writing a positive review about the company I work but it is true that this company made the difference while other companies did not.
Please name one company that gives equal important to extra curricular activities and work. Here in Contempo technologies PVT ltd they do it they give us the feeling that we need to be part of this world to work and enjoy. People here are not just money minded most companies are just money minded and never care what people think about the work environment. Other companies I worked they just want us to work and leave the place in many cases I worked till late nights but they never encouraged me financially. All they want is work , work , work from me. But in Contempo technologies pvt ltd they don’t see it that way. The way they give important to fun activities it clearly portraits their feeling on what they want to give to an employee. Contempo technologies PVT LTd just don’t see work they utilize our other special skills too. I was personally afraid of going on stage this has changed now and I can boldly face people because of Contempo SEG. I sincerely hope this company grows into one of the leading MNCs.

NASA's Mars Odyssey, which launched in 2001, will break the record Wednesday for longest-serving spacecraft at the Red Planet. The probe begins its 3,340th day in Martian orbit at 8:55 p.m. EST on Wednesday to break the record set by NASA's Mars Global Surveyor, which orbited Mars from 1997 to 2006.

Odyssey's longevity enables continued science, including the monitoring of seasonal changes on Mars from year to year and the most detailed maps ever made of most of the planet. In 2002, the spacecraft detected hydrogen just below the surface throughout Mars' high-latitude regions. The deduction that the hydrogen is in frozen water prompted NASA's Phoenix Mars Lander mission, which confirmed the theory in 2008. Odyssey also carried the first experiment sent to Mars specifically to prepare for human missions, and found radiation levels around the planet from solar flares and cosmic rays are two to three times higher than around Earth.
Odyssey also has served as a communication relay, handling most of the data sent home by Phoenix and NASA's Mars Exploration Rovers Spirit and Opportunity. Odyssey became the middle link for continuous observation of Martian weather by NASA's Mars Global Surveyor and NASA's Mars Reconnaissance Orbiter (MRO).

Odyssey will support the 2012 landing of the Mars Science Laboratory (MSL) and surface operations of that mission. MSL will assess whether its landing area has had environmental conditions favorable for microbial life and preserving evidence about whether life has existed there. The rover will carry the largest, most advanced set of instruments for scientific studies ever sent to the Martian surface.

"The Mars program clearly demonstrates that world-class science coupled with sound and creative engineering equals success and longevity," said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters in Washington.
Other recent NASA spacecraft at Mars include the Mars Global Surveyor that began orbiting the Red Planet in 1997. The Spirit and Opportunity rovers landed on Mars in January 2004. They have been exploring for six years, far surpassing their original 90-day mission. Phoenix landed May 25, 2008, farther north than any previous spacecraft to the planet's surface. The mission's biggest surprise was the discovery of perchlorate, an oxidizing chemical on Earth that is food for some microbes, but potentially toxic for others. The solar-powered lander completed its three-month mission and kept working until sunlight waned two months later. MRO arrived at Mars in 2006 on a search for evidence that water persisted on the planet's surface for a long period of time.

The 33-year odyssey of NASA's Voyager 1 spacecraft has reached a distant point at the edge of our solar system where there is no outward motion of solar wind.

Now hurtling toward interstellar space some 17.4 billion kilometers (10.8 billion miles) from the sun, Voyager 1 has crossed into an area where the velocity of the hot ionized gas, or plasma, emanating directly outward from the sun has slowed to zero. Scientists suspect the solar wind has been turned sideways by the pressure from the interstellar wind in the region between stars.
The event is a major milestone in Voyager 1's passage through the heliosheath, the turbulent outer shell of the sun's sphere of influence, and the spacecraft's upcoming departure from our solar system." The solar wind has turned the corner," said Ed Stone, Voyager project scientist based at the California Institute of Technology in Pasadena, Calif. "Voyager 1 is getting close to interstellar space."

Our sun gives off a stream of charged particles that form a bubble known as the heliosphere around our solar system. The solar wind travels at supersonic speed until it crosses a shockwave called the termination shock. At this point, the solar wind dramatically slows down and heats up in the heliosheath.

Launched on Sept. 5, 1977, Voyager 1 crossed the termination shock in December 2004 into the heliosheath. Scientists have used data from Voyager 1's Low-Energy Charged Particle Instrument to deduce the solar wind's velocity. When the speed of the charged particles hitting the outward face of Voyager 1 matched the spacecraft's speed, researchers knew that the net outward speed of the solar wind was zero. This occurred in June, when Voyager 1 was about 17 billion kilometers (10.6 billion miles) from the sun. Read More

On August 1, 2010, an entire hemisphere of the sun erupted. Filaments of magnetism snapped and exploded, shock waves raced across the stellar surface, billion-ton clouds of hot gas billowed into space. Astronomers knew they had witnessed something big.

It was as big as it may have shattered old ideas about solar activity. "The August 1st event really opened our eyes," says Karel Schrijver of Lockheed Martin’s Solar and Astrophysics Lab in Palo Alto, CA. "We see that solar storms can be global events, playing out on scales we scarcely imagined before."

An extreme ultraviolet movie of the August 1st global eruption. Different colors represent different plasma temperatures in the range 1.0 to 2.2 million

For the past three months, Schrijver has been working with fellow Lockheed-Martin solar physicist Alan Title to understand what happened during the "Great Eruption." They had plenty of data: The event was recorded in unprecedented detail by NASA's Solar Dynamics Observatory and twin STEREO spacecraft. With several colleagues present to offer commentary, they outlined their findings at a press conference today at the American Geophysical Union meeting in San Francisco.

Explosions on the sun are not localized or isolated events, they announced. Instead, solar activity is interconnected by magnetism over breathtaking distances. Solar flares, tsunamis, coronal mass ejections--they can go off all at once, hundreds of thousands of miles apart, in a dizzyingly-complex concert of violence.

"To predict eruptions we can no longer focus on the magnetic fields of isolated active regions," says Title, "we have to know the surface magnetic field of practically the entire sun." This revelation increases the work load for space weather forecasters, but it also increases the potential accuracy of their forecasts.

"The whole-sun approach could lead to breakthroughs in predicting solar activity," commented Rodney Viereck of NOAA's Space Weather Prediction Center in Boulder, CO. "This in turn would provide improved forecasts to our customers such as electric power grid operators and commercial airlines, who could take action to protect their systems and ensure the safety of passengers and crew."

In a paper they prepared for the Journal of Geophysical Research (JGR), Schrijver and Title broke down the Great Eruption into more than a dozen significant shock waves, flares, filament eruptions, and CMEs spanning 180 degrees of solar longitude and 28 hours of time. At first it seemed to be a cacophony of disorder until they plotted the events on a map of the sun's magnetic field.

Locations of key events are labeled in this extreme ultraviolet image of the sun, obtained by the Solar Dynamics Observatory on August 1st.

Title describes the Eureka! Moment: "We saw that all the events of substantial coronal activity were connected by a wide-ranging system of separatrices, separators, and quasi-separatrix layers." A "separatrix" is a magnetic fault zone where small changes in surrounding plasma currents can set off big electromagnetic storms.

Researchers have long suspected this kind of magnetic connection was possible. "The notion of 'sympathetic' flares goes back at least three quarters of a century," they wrote in their JGR paper. Sometimes observers would see flares going off one after another--like popcorn--but it was impossible to prove a link between them. Arguments in favor of cause and effect were statistical and often full of doubt.

"For this kind of work, SDO and STEREO are game-changers," says Lika Guhathakurta, NASA's Living with a Star Program Scientist. "Together, the three spacecraft monitor 97% of the sun, allowing researchers to see connections that they could only guess at in the past."

To wit, barely two-thirds of the August event was visible from Earth, yet all of it could be seen by the SDO-STEREO fleet. Moreover, SDO's measurements of the sun's magnetic field revealed direct connections between the various components of the Great Eruption—no statistics required.

Much remains to be done. "We're still sorting out cause and effect," says Schrijver. "Was the event one big chain reaction, in which one eruption triggered another--bang, bang, bang!--in sequence? Or did everything go off together as a consequence of some greater change in the sun's global magnetic field?"

Further analysis may yet reveal the underlying trigger; for now, the team is still wrapping their minds around the global character of solar activity. One commentator recalled the old adage of three blind men describing an elephant--one by feeling the trunk, one by holding the tail, and another by sniffing a toenail. Studying the sun one sunspot at a time may be just as limiting.

"Not all eruptions are going to be global," notes Guhathakurta. "But the global character of solar activity can no longer be ignored."

As if the sun wasn't big enough already….

http://www.nasa.gov/mission_pages/sunearth/news/global-eruption.html

NASA researchers are presenting new findings on a wide range of Earth and space science topics during the 2010 fall meeting of the American Geophysical Union.

The meeting runs from Monday, Dec. 13, through Friday, Dec. 17, at San Francisco's Moscone Convention Center. They are all open to registered media representatives.

This NASA AGU media Web site contains detailed information about how media can participate in the press briefings, both on-site and remotely. The site will be updated throughout the week with additional information about NASA presentations.
For More details:http://www.nasa.gov/topics/earth/agu/index.html

A circular rainbow appears like a halo around an exploded star in this new view of the IC 443 nebula from NASA's Wide-field Infrared Survey Explorer, or WISE.

When massive stars die, they explode in tremendous blasts, called supernovae, which send out shock waves. The shock waves sweep up and heat surrounding gas and dust, creating supernova remnants like the one pictured here. The supernova in IC 443 happened somewhere between 5,000 and 10,000 years ago.

In this WISE image, infrared light has been color-coded to reveal what our eyes cannot see. The colors differ primarily because materials surrounding the supernova remnant vary in density. When the shock waves hit these materials, different gases were triggered to release a mix of infrared wavelengths.

The supernova remnant's northeastern shell, seen here as the violet-colored semi-circle at top left, is composed of sheet-like filaments that are emitting light from iron, neon, silicon and oxygen gas atoms and dust particles heated by a fast shock wave traveling at about 100 kilometers per second, or 223,700 mph.

The smaller southern shell, seen in bright bluish colors, is constructed of clumps and knots primarily emitting light from hydrogen gas and dust heated by a slower shock wave traveling at about 30 kilometers per second, or 67,100 miles per hour. In the case of the southern shell, the shock wave is interacting with a nearby dense cloud. This cloud can be seen in the image as the greenish dust cutting across IC 443 from the northwest to southeast.

With the success of the SpaceX Falcon 9/Dragon mission still fresh, SpaceX CEO Elon Musk said the flight "has really been better than I expected. It's actually almost too good."

The Falcon 9 lofted the Dragon capsule into orbit this morning at 10:43 a.m. EST, lifting off from Launch Complex 40 at Cape Canaveral Air Force Station in Florida, a few miles south of the space shuttle launch pads. The Dragon returned to Earth at about 2:02 p.m., safely splashing down in the Pacific Ocean following two orbits. It marked the first time a commercial company has recovered a spacecraft from orbit.

NASA officials also were very pleased with the mission's results.

"This is really an amazing accomplishment for SpaceX," said Alan Lindenmoyer, NASA's Commercial Crew and Cargo Program Manager. "Thank you for the early Christmas present."

The mission was a demonstration flight under NASA's Commercial Orbital Transportation Services, or COTS, contract.

The first demonstration flight of SpaceX's Falcon 9 rocket and Dragon capsule for NASA's Commercial Orbital Transportation Services program has been scheduled for Wednesday, Dec. 8, from Cape Canaveral Air Force Station in Florida. The launch window extends from 9 a.m. to 12:22 p.m. EST.
During a routine inspection this week, SpaceX engineers observed two small cracks in the rocket's second stage engine nozzle. SpaceX completed repairs to the cracked nozzle Tuesday.

On Dec. 6 at 1:31 a.m. EST, NASA for the first time successfully ejected a nanosatellite from a free-flying microsatellite. NanoSail-D ejected from the Fast, Affordable, Science and Technology Satellite, or FASTSAT, demonstrating the capability to deploy a small cubesat payload from an autonomous microsatellite in space.

The successful ejection of NanoSail-D demonstrates the operational capability of FASTSAT as a cost-effective independent means of placing cubesat payloads into orbit safely.

Airline and cruise ship passengers will soon be able to see an Emmy award-winning NASA TV program that shows how agency technology is part of everyday life.

The producers of "NASA 360" have reached agreement with Airline Media Productions (AMP) International to air the half-hour magazine-style TV show through AMP's entertainment outlets around the world.

"We're excited to work with AMP International to bring 'NASA 360' to hundreds of thousands of the 760 million people who fly each year," said Mike Bibbo, the program's producer.

AMP International provides in-flight entertainment for airlines in the U.S., Middle East and Asia, including US Airways, Virgin America, Singapore Airlines, Philippine Airlines, Middle East Airlines, Flydubai and Tunisair. The company also supplies video products to cruise ships and other users of entertainment services.

"We thought travelers would be interested in learning more about how NASA technology makes planes safer, quieter and more efficient and other contributions to their daily lives," said "NASA 360" co-producer Kevin Krigsvold.

Black is black, right? Not so, according to a team of NASA engineers now developing a blacker-than pitch material that will help scientists gather hard-to-obtain scientific measurements or observe currently unseen astronomical objects, like Earth-sized planets in orbit around other stars.

The nanotech-based material now being developed by a team of 10 technologists at the NASA Goddard Space Flight Center in Greenbelt, Md., is a thin coating of multi-walled carbon nanotubes — tiny hollow tubes made of pure carbon about 10,000 times thinner than a strand of human hair. Nanotubes have a multitude of potential uses, particularly in electronics and advanced materials due to their unique electrical properties and extraordinary strength. But in this application, NASA is interested in using the technology to help suppress errant light that has a funny way of ricocheting off instrument components and contaminating measurements.

The first SpaceX Falcon 9 demonstration launch for NASA's Commercial Orbital Transportation Services program is targeted for liftoff on Tuesday, Dec. 7. Liftoff will occur from Launch Complex 40 at Cape Canaveral Air Force Station in Florida. The launch window extends from 9:03 a.m. to 12:22 p.m. EST. If necessary, launch opportunities also are available on Dec. 8 and Dec. 9 with the same window.
Known as COTS 1, the launch is the first flight of the Dragon spacecraft and the first commercial attempt to re-enter a spacecraft from orbit. This is the first of three test launches currently planned in the Falcon 9 test flight series. It is intended as a demonstration mission to prove key capabilities such as launch, structural integrity of the Dragon spacecraft, on-orbit operation, re-entry, descent and splashdown in the Pacific Ocean.

NASA established the COTS program to procure a commercial launch service to stimulate the commercial space industry, to facilitate a private industry cargo capability to the International Space Station, and to achieve cost-effective access to low Earth orbit that will attract private customers.