 Every 11 years, the sun undergoes a furious upheaval. Dark sunspots burst forth from beneath the sun's surface. Explosions as powerful as a billion atomic bombs spark intense flares of high-energy radiation. Clouds of gas big enough to swallow planets break away from the sun and billow into space. It's a flamboyant display of stellar power.
Every 11 years, the sun undergoes a furious upheaval. Dark sunspots burst forth from beneath the sun's surface. Explosions as powerful as a billion atomic bombs spark intense flares of high-energy radiation. Clouds of gas big enough to swallow planets break away from the sun and billow into space. It's a flamboyant display of stellar power.So why can't we see any of it?
Almost none of the drama of Solar Maximum is visible to the human eye. Look at the sun in the noontime sky and—ho-hum—it's the same old bland ball of bright light.
"The problem is, human eyes are tuned to the wrong wavelength," a solar physicist at the University of Colorado in Boulder. "If you want to get a good look at solar activity, you need to look in the EUV."
EUV is short for "extreme ultraviolet," a high-energy form of ultraviolet radiation with wavelengths between 1 and 120 nanometers. EUV photons are much more energetic and dangerous than the ordinary UV rays that cause sunburns. Fortunately for humans, Earth's atmosphere blocks solar EUV; otherwise a day at the beach could be fatal.
When the sun is active, intense solar EUV emissions can rise and fall by factors of thousands in just a matter of minutes. These surges heat Earth's upper atmosphere, puffing it up and increasing the drag on satellites. EUV photons also break apart atoms and molecules, creating a layer of ions in the upper atmosphere that can severely disturb radio signals.
"EVE gives us the highest time resolution (10 sec) and the highest spectral resolution (<>




 
 
 
 
 
 
 
 
 
 
 
 

